BME | Stat - Overview
T-test
Evaluating the means of one or two populations.
-
One sample t-test: evaluate whether a single group differs from a known value
R: t.test | MATLAB: ttest | Python: ttest_1samp
1
2
3
4t.test(x, m,
alternative = c("two.sided", "less", "greater"),
var.equal = FALSE)
# m is mean that you want to test1
2[h,p] = ttest(x,m, 'Tail','right/left/both')
% m is mean that you want to test1
2
3
4
5from scipy import stats
stats.ttest_1samp(rvs, popmean=3,
alternative={‘two-sided’, ‘less’, ‘greater’},
nan_policy={‘propagate’, ‘omit’, ‘raise’})
# popmean is mean that you want to test -
Independent two sample t-test: evaluate whether two groups differ from each other
R: t.test | MATLAB: ttest2 | Python: ttest_ind
1
2
3t.test(x, y,
alternative = c("two.sided", "less", "greater"),
paired = FALSE, var.equal = FALSE)1
h = ttest2(x,y, 'Tail','right/left/both')
1
2
3
4from scipy import stats
stats.ttest_ind(rvs1, rvs2, equal_var=False,
alternative={‘two-sided’, ‘less’, ‘greater’},
nan_policy={‘propagate’, ‘omit’, ‘raise’}) -
Paired sample t-test: evaluate whether there is a significant difference in paired measurements
R: t.test | MATLAB: ttest | Python: ttest_rel
1
2
3t.test(x, y,
alternative = c("two.sided", "less", "greater"),
paired = FALSE)1
[h,p] = ttest(x,y, 'Tail','right/left/both')
1
2
3
4from scipy import stats
stats.ttest_rel(rvs1, rvs3,
alternative={‘two-sided’, ‘less’, ‘greater’},
nan_policy={‘propagate’, ‘omit’, ‘raise’})
ANOVA
-
One-way ANOVA
To investigate whether different levels of a control variable have a significant effect on the observed variable.
1
1
1
-
Two-way ANOVA
-
Repeated Measures ANOVA
Normality Test
Type: Shapiro–Wilk test | One-sample Kolmogorov-Smirnov test
Aim: To assess whether samples came from a normally distributed population.
R: shapiro.test | MATLAB: kstest | Python: normaltest
1 | res_aov <- aov(flipper_length_mm ~ species, data = dat) |
1 | [h,p] = kstest(x) |
1 | from scipy import stats |
Equal Variance (Levene’s Test)
To assess the equality of variances for a variable calculated for two or more groups.
R: leveneTest | MATLAB: vartestn | Python: levene
1 | # Levene's test |
1 | load examgrades |
1 | from scipy import stats |
Chi-sq test
Fisher test
Wilcoxon test
-
Wilcoxon signed-rank test
-
Wilcoxon Rank Sum test